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Technological University of Delft, Department of Mathematics 

SUMMARY 

The set of ordinary differential equations governing free convection boundary layer flow past an isothermal 
semi-infinite vertical flat plate is solved for large Prandtl numbers by means of the method of matched 
asymptotic expansions. The analysis leads to an expression for heat transfer which contains the Prandtl number 
explicitly and which is very accurate for sufficiently large values of the Prandtl number. On the other hand 
the analysis also has qualitative assets. Before choosing the mathematical method of solution, the physical 
aspects of the large Prandtl number free convection boundary layer are investigated. The mathematical 
solution serves to enlarge our understanding of the physical implications of a free convection boundary layer 
in a large Prandtl number fluid. 
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c o e f f i c i e n t  d e f i n e d  b y  l i r a  f = a 0 + a 1 7] + a 2 )72 + .~ ._.),~ J J .1 ~ ' 1 ^  " " " " 

coefficient defined by Fj(~) = b0j + blj ~ + bfi~z+_ 

coefficient defined by equation (3) 

specific heat 

non-dimensional stream function of inner expansion (7) 

n-th perturbation of f 

non-dimensional stream function of outer expansion (15) 

non-dimensional stream function (i) 

acceleration due to gravity 

local Grashof number: g/3(T w-T )x3/u 2 

non-dimensional temperature (2) 

coefficient of heat conduction 
x 0T 

local Nusselt numbez. 
T w - T  ~ 0 y  

t e m p e r a t u r e  y--0 

w a l l -  t e m p e r a t u r e  

a m b i e n t  t e m p e r a t u r e  

l o n g i t u d i n a l  v e l o c i t y  

c o - o r d i n a t e  m e a s u r i n g  d i s t a n c e  f r o m  t h e  l e a d i n g  e d g e  

c o - o r d i n a t e  m e a s u r i n g  d i s t a n c e  n o r m a l  to  t h e  p l a t e  

Greek symbols 

fl coefficient of thermal expansion 
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6 i e x p a n s i o n  p a r a m e t e r  (21) 

6i e x p a n s i o n  p a r a m e t e r  (22) 

A i e x p a n s i o n  p a r a m e t e r  (33) 

~ t  e x p a n s i o n  p a r a m e t e r  (34) 

e e x p a n s i o n  p a r a m e t e r :  a'�89 

i n n e r  s i m i l a r i t y  c o - o r d i n a t e  (9) 

0 n o n - d i m e n s i o n a l  t e m p e r a t u r e  of i n n e r  e x p a n s i o n  (8) 

On n - t h  p e r t u r b a t i o n  of 0 

"~ n o n - d i m e n s i o n a l  t e m p e r a t u r e  of o u t e r  e x p a n s i o n  (16) 

'O n n - t h  p e r t u r b a t i o n  of 

s i m i l a r i t y  c o - o r d i n a t e  (3) 

u kinematic viscosity 

outer similarity co-ordinate (17) 

p density 

cr Prandtl number: 

stream function 

1. In t roduc t ion  

It is well-known that in heat transfer through viscous fluid flows the Prandtl 
number ~ plays a very important role. Mathematically this role is generally 
expressed through the occurrence of this number in the governing 
non-dimensional partial differential equations. While for moderate values 
of ~ the integration of these equations can be performed easily - that is 
to say for relatively simple problems - the extreme values ((r ,-, 0, ~ ~oo) 
have proved to be sources of trouble. For these extreme values of the 
Prandtl number the boundary layer of free convection approaches a sin- 
gular character so that a direct regular perturbation technique cannot be 
applied for obtaining insight in free convection under such conditions. 

The first paper inveiling some of the intricacies of this matter is the 
work of Le Fevre 1 In papers r7 earlier of Sohuh and Ostrach the E2] 
equatlons" were integrated' for particular small or large Prandtl numbers by 
means of a computer. Although these integrations give valuable qualitative 
information, e.g. about the ratio of the thicknesses of the velocity- and 
the temperature boundary layer in the limiting cases, a more satisfactory 
analysis will involve a singular perturbation technique having r or ~=~ 
as zeroth perturbation. In his analysis Le Fevre has tried to furnish these 
limiting cases but he only achieved a partial success. As the limiting case 
of small ~ he saw the inviscid free convection boundary layer. It is impos- 
sible, however, to describe small Prandtl number free convection by perturb- 
ing inviscid free convection directly. Recently Kuiken [4] has solved this 
problem by stating that ~ can also approach zero if k-~ m. In this case 
the limiting character of the free convection boundary layer is a viscous 
boundary layer of forced flow type. Lykoudis F57 was the first to recog- 
nize this behavior of the inner part of the free convection boundary layer. Using 
this boundary layer as the main term of an inner expansion and Le Fevre's 
inviscid layer as the zeroth perturbation of an outer expansion it was 
shown that this problem could be solved by the method of matched asymp- 
totic expansions. 

It has also been shown by the present author [4, 15] that the same dual 
character of free convection boundary layer flow exists for ~-->oo. This 
problem, however, was not solved explicitly. It is the purpose of this paper 
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to f i l l  th i s  gap .  I t  h a s  to be  m e n t i o n e d  tha t  the m e t h o d  of m a t c h e d  a s y m p -  
to t ic  e x p a n s i o n s  h a s  b e e n  a p p l i e d  a l r e a d y  to f o r c e d  c o n v e c t i o n  a t  l a r g e  
o - [ 6 ] .  F o r c e d  c o n v e c t i o n ,  h o w e v e r ,  is  r e l a t i v e l y  s i m p l e  s i n c e  the m o m e n -  
t u m -  and  e n e r g y  e q u a t i o n  a r e  u n c o u p l e d .  In f r e e  c o n v e c t i o n  the t e m p e r a t u r e -  
and v e l o c i t y  e f f e c t s  a r e  c o m p l e t e l y  i n t e r w o v e n  so  tha t  the u n d e r s t a n d i n g  
and description of the physical implications is a more complicated task 
than it is for forced flow especially under extreme Prandtl number conditions. 
Consequently it is necessary to carefully present an analysis of the physical 
picture of free convection at large ~. When once the physical background is 
totally understood the way to the mathematical solution is easy to find. 
Finally we may remark that approximate solutions for large Prandtl number 
free convection have been found by several authors. We may mention the 
work of Morgan and Warner [7] whose analysis is virtually the same as Le 
Fevre's. They tried to extend their results to some larger Prandtl number 
range. The methodofsteepest descent as introduced in the theory of boundary 
layers by Meksyn E8J and Merk [9] has been applied to free convection ~y 
Bradley [10J. Braun and  eighway Fit7 developed an integral method for 
both very small and very large Prandt-i numbers. 

2. Physical analysis of the boundary layer. 

Although it is possible to derive the physical picture of large Prandtl num- 
ber free convection by pure physical contemplation, it seems to be expedient 
and might enhance our chances of a successful investigation to use the 
mathematical achievements given in the literature. Let us consider therefore 
the Figs. i and 2 where the temperature and velocity profiles, as cal- 
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c u l a t e d  by  O s t r a c h  [3] f o r  cr=100 and  a=1000,  h a v e  b e e n  g iven .  T h e s e  
g r a p h s  c l e a r l y  s h o w - f e a t u r e s  a b o u t  wh ich  the f o l l o w i n g  r e m a r k s  m a y  be 
m a d e  : 

1 ~ the t e m p e r a t u r e  b o u n d a r y  l a y e r  is  v e r y  thin,  

2 ~ a l t h o u g h  the v e l o c i t y  i s  s m a l l  the v e l o c i t y  b o u n d a r y  l a y e r  is  m u c h  t h i c k e r  
than  the t e m p e r a t u r e  b o u n d a r y  l a y e r ,  

3 ~ in the t e m p e r a t u r e  b o u n d a r y  l a y e r  the v e l o c i t y  g r o w s  r a p i d l y  and  r e a c h e s  
i t s  m a x i m u m  v a l u e  n e a r  the o u t e r  edge  of the t e m p e r a t u r e  b o u n d a r y  
l a y e r ,  

4 ~ o u t s i d e  the t e m p e r a t u r e  b o u n d a r y  l a y e r  the v e l o c i t y  d e s r e a s e s  s l o w l y  
to z e r o ,  

5 0 the e f f e c t s  1 ~ t h r o u g h  4 ~ a r e  m o r e  p r o n o u n c e d  f o r  l a r g e  ~. 

T h e s e  r e m a r k s  u n d o u b t e d l y  d e m o n s t r a t e  t ha t  f o r  l a r g e  P r a n d t l  n u m b e r s  the 
f r e e  c o n v e c t i o n  b o u n d a r y  l a y e r  c o n s i s t s  of  two r e g i o n s  w h e r e  d i f f e r e n t  p h e -  
n o m e n a  a r e  p r e d o m i n a n t .  F i r s t ,  t h e r e  is  an  i n n e r  r e g i o n  w h e r e  t a n g i b l e  
t e m p e r a t u r e  d i f f e r e n c e s  wi th  the a m b i e n t  f lu id  e x i s t .  Only  in th i s  r e g i o n  
t h e r e  a r e  b u o y a n c y  e f f e c t s .  C o n s e q u e n t l y  in th i s  r e g i o n  the t r a n s p o r t  t e r m s  
and  the c o n d u c t i o n  t e r m s  of the e n e r g y  e q u a t i o n  h a v e  to be of the s a m e  
o r d e r  of m a g n i t u d e .  M o r e o v e r ,  a s  a l a r g e  P r a n d t l  n u m b e r  f lu id  c a n  be 
c o n s i d e r e d  to be  v e r y  v i s c o u s  the b u o y a n c y  t e r m  h a s  to be of the s a m e  
o r d e r  of m a g n i t u d e  as  the v i s c o u s  t e r m .  T h i s  d e c i s i o n  i s  qui te  r e a l i s t i c  
s i n c e ,  as  we h a v e  r e m a r k e d  in 3 ~ , the v e l o c i t y  g r a d i e n t s  and  thus  the v i s c o u s  
s t r e s s e s  a r e  l a r g e  in the t e m p e r a t u r e  b o u n d a r y l a y e r .  Second ,  we h a v e  an o u t e r  
r e g i o n  w h e r e  no b u o y a n c y  e x i s t s .  The  f lu id  in t h i s  r e g i o n  is  f l owing  due 
to v i s c o u s  c o n t a c t  wi th  the i n n e r  r e g i o n .  In the e x t r e m e  c a s e  (c~ ~ ~ )  th i s  
l a y e r  m i g h t  be  d e s c r i b e d  as  a v i s c o u s  b o u n d a r y  l a y e r  of  f o r c e d  f low type  
the f o r c e  b e i n g  e x e r t e d  a t  the f l a t  p l a t e  due to b u o y a n c y .  I t  i s  c l e a r  tha t  
the e q u a t i o n s  f o r  th i s  l a y e r  m a y  be d e r i v e d  by  i m p o s i n g  two c o n d i t i o n s .  
F i r s t ,  the l o n g i t u d i n a l  v e l o c i t y  h a s  to be of the s a m e  o r d e r  of m a g n i t u d e  
a s  the c o r r e s p o n d i n g  v e l o c i t y  in the i n n e r  l a y e r .  Second ,  the i n e r t i a  t e r m s  
and  the v i s c o u s  t e r m s  h a v e  to be  of  the ~same o r d e r  of m a g n i t u d e  ( cond i t i on  
of Prandtl for forced boundary layer [12] ). 

I.- .-J 

3. Mathematical analysis of the boundary layer. 

Guided by the physical conclusions just presented we will endeavor to de- 
velop exact numerical results for large Prandtl number free convection. If 
we restrict ourselves to the vertical flat plate having a uniform tempe- 
rature Tw it is a known fact [3] that through substitution of 

3 

= 4 uc  x ~ g(~), (1) 

T = T m + ( T  w - T ~ )  h(g),  (2) 

-�88 {g ~(T_~w/. T')I �88 
= c y  x ; c = 4u2 " (3) 

in the m o m e n t u m -  and e n e r g y  e q u a t i o n  the f o l l o w i n g  s e t  of  o r d i n a r y  
differential equations is obtained 

d 3 g  d2g ( d g ]  2 

+ 3 g ~  2 - -  + h = 0, (4) 
d~  3 d/4 2 \ d ~ /  
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d2h dh 
- - +  3ag-- = O. 
d/~ 2 d,u 

359 

(5) 

For later use it is also necessary to present the expression for the lon- 
gitudinal velocity 

_ a ~  _ 4 u c  2 x  �89 d g  (6 )  
u 8 y  d]~" 

the inner problem 

First we will try to describe the layer nearest to the wall, which is the 
temperature boundary layer. For obvious reasons this layer will be called 
the inner region. Let us consider a transformation of variables 

3 
g = (~-~ f(r /) ,  (7) 

h : 0(n) ,  (8) 

/z : r/or'�88 (9 )  

The resulting momentum- and energy equation are 

d3f I d2f 
+ 0 + e 2 3f 

du 3 d~ 2 

(t20 dO 

+ 3 f -  = O, 
d~ 2 d~ 

o. (lO) 

(11) 

with e = or-�89 These equations clearly satisfy the conditions imposed upon 
the inner region, i.e. the conduction- and convection terms are of equal 
order of magnitude in the energy equation and in the momentum equation 
this is true for the viscous- and the bouyancy terms. Furthermore we have 

3 3 
~inner = 4 u c  x 4 f f2f ( r / ) ,  ( 12 )  

Tinne r = Too + ( T  w - Too ) 0(r / ) ,  

dA 
U inner = 4 U C 2 X �89 r d~ " 

the outer problem 

(13) 

(14) 

By substitution of 

1 

g : ~-~F(~) .  

h = ~([), 

i n  t h e  e q u a t i o n s  (4)  a n d  (5)  w e  o b t a i n  

+ 3F -- - 2 + e-2~ 0, 
d~ 3 dg 2 \d-~/ 

(15) 

(16) 

(18) 
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2 
d,~ d 4 

3 F - - +  e 2 ~ =  0. 
d~ d~ 2 

Since the longitudinal velocity appears to be 

(19) 

d F  U = 4 z J e 2 x  �89 r --~-., outer a ~  
(20) 

it becomes clear upon comparing (14) and (20) that u is of the same order 
of magnitude in both layers. Moreover, the viscous- and inertia terms in 
the momentum equation (18) are, as required, of the same order of magnitude. 
At first sight it seems, however, somewhat contradictory in equation (18) 
that the buoyancy term is multiplied by the large parameter e-2 Buoyancy 
was thought to play a minor role in the outer layer. This problem can be 
solved very soon by considering equation (19). If we insert in this equation 
expansions of the following type 

F({) : Fo(~) + 61(r FI(~) + 62(e ) F2([) + ........ (21) 

0(~) = "~o(~) + [ l ( z )  ~ 1 ( { )  + ~2(r ~2 ( { )  + . . . . . . . .  ( 2 2 )  

with 

6i+I 6i+I 
lira ~ = 0; lira - 0; 60 = 60 : i, (23) 
~-~ 0 6 i E-*0 6i 

then the zeroth perturbation yields 
d@ 0 

F o - 0. 
d~ 

(24) 

We have to rule out F 0 =0 as a solution since F is eonnected with the 
stream function which is always positive, save at the wall Hence d~90/d~=0 
yielding @0 =constant. This constant has to be zero since@(r Hence 40=0. 
For the first perturbation we now have the equation 

d~ 1 
F 0 -- o. (25) 

d~ 

For similar reasons as were advanced for G 0 we infer ~91 =0. It immediately 
follows now that all perturbations of the temperature are zero in the outer 
region. As a consequence we are left with one equation for the description 
of the outer layer. 

+ 3F - 2 = 0. (26) 
d~ 3 d~ 2 \d{ / 

This result is in complete agreement with what we already remarked about 
the character of the outer layer. It is a layer of forced flow type the force 
being a exerted at the wall through buoyancy. The mathematical transla- 
tion of these physical remarks is that according to the well-known 
matching principle [13] the outer layer has to be brought into contact with 
the inner layer which is the layer of the buoyancy forces. With respect to 
this it is interesting to remark that the analysis of forced flow along a mov- 
ing flat plate with a spatially varying velocity distribution proportional to 
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x �89 will lead to equation (26) if an appropriate similarity transformation is 
applied. The occurrence of .the coefficient x* in (6), (14) and (20) is in 
logical agreement with this. 

For matching purposes the expression 

3 e  �89 3 �89 ~outer = 4 U C X 4  F ( ~ )  = 4 y C X 4 e  F ( r / e )  (27 )  

will prove to be most useful. 

m a t c h i n g  

The boundary conditions which the various functions have to satisfy can 
partly be derived from the original boundary conditions imposed upon the 
original functions g(/~) and h(/~). That is to say the inner boundary conditions 
have to be allotted to the inner problem while the outer functions have to 
satisfy the ambient conditions. We consequently have 

df 
f = O, dB O, 0 = 1 a t  N = O, ( 2 8 )  

dF 
,~--y ~ 0 a s  ~ - o  ~ .  (29) 

It is quite clear that additional boundary conditions have to be found for 
r]-->~ and for ~0. Here the matching principle enters the problem. It is 
most easily applied to the temperature. On account of the fact that for the 
outer problem the temperature is exactly equal to zero we may immediately 
infer 

0 ~ 0 a s  r/--~ oo. (30) 

For the matching of the inner- and outer stream function Winner and ~outer 
a fu11-fledged matching formula has to be presented 

lim ~inner = lira ~outer" (31) 
~-'~ ~ o  

which on using (12) and (27) leads to 

l i r a  ef(N) = l i r a  F(r]e). (32) 

With lim we denote the behavior of a function in the direction given in the 
formula. Formula (32) provides both the outer boundary conditions for f(~) 
and the inner boundary conditions of the outer problem. 

4. Solution 

z e r o t h  p e r t u r b a t i o n s  

In (21) we already have given a series as a possible representation of the 
solution of the outer problem. For the inner problem we accordingly in- 
troduce 

f (~)  = fo (~)  § A l ( d  f l ( ~ )  § A2 (c )  f2 (~ )  § . . . . . . . .  

O(n) = Oo(rl) + A l ( c )  01(rl) + A2(c)  02(n) + . . . . . . . .  

(33) 

(34) 

w i t h  
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Ai+l Ai+l 
lira ~ =  0; lira = 0; A 0 = A0 = I. (35} 
�9 ~0  A i ~"~0 ~i  

The differential equations for the zeroth perturbations become upon sub- 
stitution of (33), (34) and (21) in (i0), ill) and (26) 

d3f 0 
+ 00 = O~ dr/3 (36) 

d200 d00 
+ 3 f  0 - 0, (37) 

d~ 2 d~ 

d3F0 d2F0 (dF012 
+ 3F 0 ~ - 2 = 0. (38) 

d~ 3 d~ 2 \ - ~ - }  

At th is  po in t  it  is  n e c e s s a r y  to r e c a l l  tha t  the a s y m p t o t i c  (r7 -- ,  oo) b e h a v i o r  
of b o u n d a r y  l a y e r  s o l u t i o n s  g e n e r a l l y  g i v e s  f o r  the s t r e a m  func t ion  a p o l y -  
n o m i a l  in ~ p lus  t e r m s  of e x p o n e n t i a l l y  s m a l l  o r d e r ( e x p - ) .  F o r  e x a m p l e  
B l a s i u s ' s  s o l u t i o n  g i v e s  fo r  ~ ---, r f ~ '~  + c o n s t a n t  + e x p -  [141. Wi thou t  
f u r t h e r  p r o o f  and gu ided  by th is  u s u a l  b e h a v i o r  we d i r e c t l y  d e r i v e  f r o m  
e q u a t i o n  (36) u s i n g  the c o n d i t i o n  0o(~)--* 0 as  ~---, 

l i ra  f0(r/) "~ a20r/2 + al0r/ + no0 + e x p - .  (39) 

On w r i t i n g  

2 
l i ra  F0(~) = b0o + bl0 ~ + b20 ~ + . . . . . . . .  (40) 
~ 0  

an e v a l u a t i o n  of (32) up to t e r m s  of 0(c) g iv e s  

r ~2 + al0r~ + a00) = boo + b l 0 ~ c .  (41) 

T h r e e  r e s u l t s  c a n  be d r a w n  a t  once  f r o m  e q u a t i o n  (41). F i r s t  boo =0 which  
is  e q u i v a l e n t  with 

F 0 (0)  -- 0.  (42 )  

This condition is quite logical as it expresses that @outer is zero at the 
wall for the extreme case o--,~. 

As a second result the comparison of left- and righthand side of (41) 
gives a20=0 or 

d2f0 
- -  -~ 0 as r/--* co. (43) 
drl2 

This result we indeed may derive from (41) since a term with r/2 can only 
enter the righthand side of (41) through ~2. Since ~ = r/c such a term can 
only occur in terms of 0(e 2) or higher orders. The third result to be 
obtained from (41) naturally is bl0=al0 or 

df 0 

dr/ 

dF0 

d~ ~=o 
(44) 
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This obviously is a matching of the longitudinal velocities which is the 
cause of the existence of the outer layer. 

The system of equations (36) and (37) with the boundary conditions (28), 
(30) and (43) has already been found by Le Fevre [i] in his analysis of free 
convection for (~-~. This author, however, did not give a reason for 
the introduction of condition (43). He did not include in his analysis, what 
we have called here, the outer layer. It must have become clear that only 
through using this layer one can deduce (43). 

An integration of the equations of the zeroth inner perturbation with the 
appropriate boundary conditions gives 

l i ra  f0(q) "~ 0. 5106804 ~? - 0 .  2 6 1 0 0 9  + e x p - .  

Through (44) and (45) we may conclude 

(45) 

dF 0 I 
[ = O. 5106804. 

d~ i ]~o 
(46) 

I n t e g r a t i o n  of (38) wi th  (29), (42) and  (46) r e n d e r s  

d2F~ I 
= - 0.5622789 = 2b20. 

d~ 2 ~=o 
(47) 

With  (42), (46) and  (47) a l l  s u b s e q u e n t  c o e f f i c i e n t s  of  the s e r i e s  (40), r e -  
p r e s e n t i n g  a s o l u t i o n  of F0 f o r  s m a l l  v a l u e s  of ~, c a n  be c a l c u l a t e d .  T h e s e  
c o e f f i c i e n t s  h a v e  to be a v a i l a b l e  f o r  m a t c h i n g  of the h i g h e r  p e r t u r b a t i o n s .  

first perturbations 

We have now arrived at the question as to what should be the expansion 
variables Al(e), ~l(e)and 61(c) in (33), (34) and (21). If we assume as a 
representation of Fn(~) near ~=0 

Fn(~)  b0n + bln~ + b2n~ 2 : + . . . . . . . . . .  (48) 

it is understood that the term a00 e in the lefthand side of (41) can be 
produced by the righthand side by taking 61(~)=~. Indeed, application of 
the matching rule (32) yields b01=a00 which on using (45) leads to 

F 1(0) = - 0.261009. (49) 

Iks the righthand side of (32) produces terms with ~2 c 3 etc. we also 
decide that the expansion parameters AI(~) and ~l(e) are both equal to c. 
Substitution of the expansions for f, 0 and F in the corresponding equations 
gives for the equations of the first perturbations 

d3fl 

d~ 3 
- -  + 01 = 0,  ( 50 )  

d201 d01 d00 
- -  + 3 f 0 -  + 3fl - 0, 
d~ 2 d~? d~ 

d3F1 d2F1 dF 0 dF I 
- -  + 3F 0 - -  4 

d~ 3 d~ 2 dE d~ 

d2Fo 
+ 3  - -  F I = 0 .  

d~ 2 

C51) 

(52 )  



3 6 4 H. K. Kuiken 

Application of (30) and (50) yields 

d3fl 
d ~  3 

- - , 0  a s  9 ~ ~ ( 5 3 )  

o r  

2 
l i ra  f l (9 )  = a219 + a n 9  + a01 + e x p - .  (54) 

On w r i t i n g  down (32) f o r  t e r m s  of 0(e  2) we ob ta in  

62(a2192 + a 119 + a01) = c2(b2092 + b l 1 9  + . . . . . .  ). ( 55 )  

O b v i o u s l y  a21=b20 o r  u s i n g  (47) and (54) 

d2fl 
-, - 0. 5622789 as 9--> ~o. (56) 

dr/2 

With (30), (56) and the inner conditions fl=0, dfl/d9=0, 01=0 at 9=0 the 
equations (50) and (51) can be integrated. For (54) we now find 

lira fi(9) = - 0.281139492+ 0.3388369 - 0.27605 +exp -. (57) 

On deriving all =b n from (55) we find using (48), (54) and (57) the remaining 
boundary condition for the outer problem 

dF 1 
= O. 338836.  (58) 

dE ~ =o 

With  (29), (49) and (58) we can  i n t e g r a t e  (52).  F o r  m a t c h i n g  p u r p o s e s  we 
g ive  h e r e  

d2F 1 
= - 0.351566 = 2b21 (59) 

d~ 2 
~--0 

higher perturbations 

In order to obtain results which are of a high degree of accuracy for a 
considerable Frandtl number range it is justified to give the second per- 
turbations. Without going into much detail now it suffices to remark that 
it is easy to prove that the expansion variables A2(e), ~2(e) and 62(e ) are 
all equal to e 2. The resulting equations are 

d3f 2 d2fo (dfol 2 
+ 02 + 3 fo 2 ~ = 0, 

d93 d92 \dg/ 
(6o) 

d2~ d0 2 d0 o d01 
~ + 3f 0 + 3 f2 + 3fl--- 
du 2 d9 d9 d9 

- 0, (61) 

d3F2 d2F2 dF 0 dF  1 
+ 3F0  - -  4 

d~ 3 d~ 2 d~ dE 
+ 3 

d2Fo 

d~ 2 
F 2 + 
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+ 3F I 2 = 0. 
d~V. \ - ~ - ' -  ] 

365 

(62) 

If we search first for the outer boundary conditions of the inner problem 
we have to write down the coefficient of E 3 of the righthand side of (32). 
This given 

2 
lira f2(~) = b30 ~3 + b219 +b129+b03 +exp-. (63) 

In (63)both b30 and b21 (see(59)) are known. That f2 can indeed satisfy a 
behavior as presented in (63) can immediately be seen by considering equation 
(60) for large values of 9 and neglecting exp-. From (45) and (60) follows 

d3f2 
- -  ~ 2 (0 .  5 1 0 6 8 0 )  2 = O. 5 2 1 5 8 9  (64 )  
dr/3 

so that 

f2 "-* 0" 08693193 + terms of order lower 9 3. (65) 

By substitution of (40) in (38) one can immediately verify that the coefficients 
of 9 3 in (63) and (65) coincide. We accordingly have to integrate (60) and 
(61) with the condition that the coefficient of 9 2 in lirn f2(9) is indeed equal 

to the value given in (63). The other conditions are f2=df2/d~=02=0 at 9=0, 
02(~)=0. Upon integration we find for (63) 

3 2 
lira f2(9) = 0.0869319 0.17579~ + 0.47750~ + 
~?--~ 

+ terms of order lower ~. (66) 

Matching for F2 now gives 

F 2 ( 0 )  = - 0 . 2 7 6 0 5 ;  
d F  2 

dt ~0 
= 0.47750. (67) 

With (29) and (67) equation (62) can be integrated. 

numerical  results  

For subsequent use some important numerical data are collected in table i. 
These figures are related to the skin friction, heat transfer and the mass 
flow through the boundary layer. 

TABLE 1 

d2fi 
d~ 2 14=0 

0 0.824516 
1 -0.306698 
2 0.224248 

d~ L d R rtsO 

-0.710989 
0.186442 
-0.067251 

0.429209 
0.021623 
0.071661 

It is furthermore necessary to give the graphs representing the various 
perturbations of the inner- and outer expansions (Figs. 3, 4, 5). As will be 
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s h o w n  l a t e r  i t  i s  p o s s i b l e  to c o n s t r u c t  o v e r - a l l  v e l o c i t y -  and  t e m p e r a t u r e  
p r o f i l e s  wi th  t h e s e  g r a p h s .  

1.0 

0 . 8  

0~ 

0 . 4  

0.2 

Oo 

2 

o, 

Fig.3 Temperature perturbations of inner expansion 

2 . 0  

1.6 

1.2 

O.O 

0.4  

0 
0 I 2 3 4 

Pig. 4 Velocity perturbations of inner expansion 

5. R e s u l t s  

As considerable effort has been expended already in the past to investigate 
large Prandtlnumber free convection it is imperative to compare our results 
with those of the earlier studies. As being fit for comparison we see in 
the first place the work of Ostrach [3] and Le Fevre rl]. Ostrach presents 
exact numerical results by direct integration of the-gquations (4) and (5) 
for some special large Prandtl numbers. Le Fevre's analysis leads to an 
interpolation formula which joins both ends of the Prandtl number scale for 
which he had found exact data. This interpolation formula is satisfactorily 
compatible with the results of Ostrach (three decimal places) Other less 
accurate results will also be used for comparison. 

The justification of the presentation of our method can be found by con- 
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Fig.5 Velocity perturbations of outer expansion 

sidering that the present results are drawn from equations which are of 
a balanced nature. This is contrary to the results of Ostrach which have 
been obtained by integration of equations containing the large parameter a. 
This may be inconvenient from a numerical point of view. Our exact calcula- 
tions, however, show that Ostrach's results are significant in all decimal 
places presented by him. 

heat transfer 

Let us first consider heat transfer with the well-known Nusselt-Grashof 
group (see [3]) 

Nu x dh 
I 

- 2-~  - -  ( 6 8 )  

(Grx)�88 d/2 
g=0 

As ~=0 r e f e r s  to the i n n e r  r e g i o n  we h a v e  to u s e  (8) and  (9) f o r  o b t a i n i n g  

F 001 I - 2 "~ a �88 ~ + a "�89 + ~ a ' l +  O ( a  "g ( 6 9 )  

(Grx)�88 [dr/ .0=0 dr/ dr/ [ ~=0 ~=0 

whieh  upon  i n s e r t i o n  of the f i g u r e s  of  t a b l e  1 b e c o m e s  

Nu x .�89 3 
- 0 . 50275  - 0 . 1 3 1 8 a  + 0 . 0 4 7 5 a - 1 + O ( ~ - 2 ) .  (70) 

(a Grx)�88 

In t ab le  2 the r e s u l t s  of d i f f e r e n t  a n a l y s e s  a r e  g i v e n  f o r  N u x / ( a G r x )  �88 
I t  f o l l o w s  qui te  d e a r l y  f r o m  t ab l e  2 tha t  f o r  (r=100 and a=1000 the p r e s e n t  
a n a l y s i s  and  tha t  of O s t r a c h  l e a d  to f i g u r e s  d i f f e r i n g  but  one  un i t  of  the 
f o u r t h  d e c i m a l .  A p p a r e n t l y  the f i g u r e s  of  O s t r a c h  - i n c l u d i n g  the o t h e r  v a l u e s  
of ~ c o n s i d e r e d  by h i m  - a r e  c o r r e c t  to f o u r  d e c i m a l  p l a c e s .  F r o m  th i s  
we m a y  d i r e c t l y  i n f e r  by  m a k i n g  u s e  of  the f i g u r e s  f o r  a=l, 2 and 10 tha t  
the t r u n c a t i o n  e r r o r  in (70) is  

3 
- - -  - o .  0 2  a - ~ .  ( 7 1 )  
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TABLE 2 

Nux/(O'Grx )�88 for various Prandtl numbers 

I000 

I00 

i0 

2 

1 

present Ostrach [3 3 Le Eevre E 1] Brindley El 0] 

0.49863 
0.49004 
0.4658 
0.4333 
0.4185 

0.4987 
0.4899 
0.4650 
0.4260 
0.4010 

0.499 
0.490 
0.465 
0.426 
0.401 

O. 4953 
O. 5244 
0.5171 

As a consequence formula (70) yields figures which for cr > i00 can at 
most differ in two units of the fifth decimal from the exact values. This 
accuracy can be guaranteed since the figures of table 1 are sufficiently 
accurate. 

The solution of Le Fevre and ours have in common that they display 
the Prandtl number explicitly. As the figures of Le Fevre are correct 
in three decimal places the present solution must only be used for the cal- 
culation of heat transfer if it leads to more accurate results. From the 
truncation error (71) we may deduce that equation (70) produces figures 
which are accurate in four decimal places if (~ > 35. 

total mass flow 

As the total mass flow is related to the complete boundary layer we have 
to use the results of the outer problem for its description. From (27) 
and table 1 we can derive for the total mass flow 

3 _�88 
lira @outer = 4 vcx 7 (r lira F(~) = 
y-~ ~ ~-,.- 

4 V e x  ~'e-~ . 4 2 9 2 1 + 0 . 0 2 1 6 2 7 � 8 9  c r - l + o ( ~  "g) . (72) 

If  ~ t e n d s  to in f in i ty  due to v a r i a t i o n s  of k , p  o r  Cp the to t a l  m a s s  f low 
evidently will go to zero. Since the viscosity occurs also outside G in (72) 
we have to expect a different result for v .-, =. Using (3) it can be proved 
that the total mass flow is proportional to v �88 if G is large enough. 

By means of the inner expansion it is easily shown that the skin friction 
in large Prandtl number fluids is also proportional to y �88 

temperature- and velocity profiles 

Another question of interest concerns the temperature- and velocity pro- 
files. In constructing these profiles with the results of our analysis we have 
to make use of the so-called composite expansion technique which is one 
of the topics of matched asymptotic expansions. If we direct our attention 
first to the velocity distribution we find as the composite expansion using 
three term inner and outer expansions [13]. 

(df0dfl d 2)/dF0 F1 
+ ........ o--�89 + o - '1 + ---- ~-�89 + G -1 , 

\ dr? d ~ d~ \ d~ d~ d~ 
dg = cr- �89 +O(cr-2) (73) 
dM x 

bl0 + 2b20 ~ + 3b30 ~2 + (bl l  + 2b21 ~)G_ ~ + b12 .1  

On a c c o u n t  of the f ac t  tha t  the o u t e r  e x p a n s i o n  f o r  the t e m p e r a t u r e  is  
e x a c t l y  e q u a l  to z e r o  the c o m p o s i t e  e x p a n s i o n  c o i n c i d e s  wi th  the i n n e r  
e x p a n s i o n  
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h(u) : 00(4) + 01(~)~'�89 + 0~(~)~ "1 + o (~ -~ )  �9 (74) 

I f  we want  to c o m p a r e  (73) and  (74) g r a p h i c a l l y  wi th  the p r o f i l e s  of  O s t r a c h  
we h a v e  to r e s o r t  to P r a n d t l  n u m b e r s  which  a r e  no t  too l a r g e ,  s i n c e  f o r  
l a r g e  (~the d i f f e r e n c e s  a r e  g r a p h i c a l l y  i n d i s t i n g u i s h a b l e .  The  f i g u r e s  6 and  7 

1.0 

0.8 

0.6 

0.4 

0.2 

0 
0 

Ostroch 
Composite Expansion 

f 
I 2 3 4 

Fig. 6 Comparison of temperature profiles (Ostrach and present) for (~ = 2 o.o~~176 ~roch\\\.x.. 
0.10 

0 
0 I 2 3 4 5 

Fig. 7 Comparison of  ve loc i ty  profi les (Ostrach and present) for o" = 2 

s h o w  g r a p h s  f o r  the v e l o c i t y  and  the t e m p e r a t u r e  f o r  ~=2. I t  i s  s e e n  tha t  
in the i n n e r  r e g i o n  the a c c u r a c y  is  g rea t e r?  than  in the o u t e r  r e g i o n .  
F r o m  the v e l o c i t y  th is  is  d i r e c t l y  e v i d e n t .  F o r  the t e m p e r a t u r e  p r o f i l e s  
th is  m a y  be c o n c l u d e d  f r o m  the f a c t  tha t  on ly  in the m a t c h i n g  a r e a  a 
d i f f e r e n c e  b e t w e e n  O s t r a c h ' s  r e s u l t  and  o u r s  c a n  be s e e n .  In o r d e r  to 
i l l u s t r a t e  the i m p r o v e d  a c c u r a c y  f o r  l a r g e r  v a l u e s  of o- v e l o c i t y  p r o f i l e s  a r e  
p r e s e n t e d  f o r  (T=10 in F i g u r e  8. 

6. Concluding remarks  

I t  m a y  h a v e  b e c o m e  c l e a r  tha t  the p r i m a r y  i m p o r t a n c e  of the p r e s e n t  s t u d y  
is  a q u a l i t a t i v e  one.  I t  h a s  b e e n  a t t e m p t e d  s t a r t i n g  with  p h y s i c a l  c o n s i -  
d e r a t i o n s  to e x p o s e  the dua l  c h a r a c t e r  of a l a r g e  P r a n d t l  n u m b e r  b o u n d a r y  
l a y e r  of  f r e e  c o n v e c t i o n  t h r o u g h  u s i n g  t h o s e  m a t h e m a t i c a l  t oo l s  wh ich  a r e  
m o s t  s u i t a b l e  fo r  the d e s c r i p t i o n  of th is  p r o b l e m .  In p a r t i c u l a r ,  the r o l e  
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Fig. 8 Comparison of velocity profiles (Ostrach and present) for o = 10 

of the outer region became obvious in this way. 
A question still to be discussed concerns the expansion parameter in the 

expressions (70) and (72). One might wonder whether a physical explanation 
exists for this parameter being (y-�89 As an explanation we may give that 
these expansions are generated through matching of two regions. The ratio 
of the thicknesses of these regions is proportional to G "�89 as may be shown 
through comparison of the inner variable rl and the outer variable [. The 
rate of interaction of inner and outer region, as expressed by the matching 
technique, is proportional to the ratio of the thicknesses of the layers. 
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